Shift Register =============== This example demonstrates how to shift values in registers in each clock cycle **KEY CONCEPTS:** `Kernel Optimization <https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Optimizing-Data-Movement>`__, `Shift Register <https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Inferring-Shift-Registers>`__, `FIR <https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Inferring-Shift-Registers>`__ **KEYWORDS:** `#pragma HLS ARRAY_PARTITION <https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-array_partition>`__ This example demonstrates two ways to implement an FIR filter discrete convolution operation. It requires the values of all elements of FIR filter array for each element of the output array. In the naive implementation, limited memory ports are available from the ``shift_reg`` array to the kernel interface thus efficient pipelining of the operation is not possible. .. code:: cpp int coeff_reg[N_COEFF]; read_coef: for (int i = 0; i < N_COEFF; i++) #pragma HLS PIPELINE II=1 coeff_reg[i] = coeff[i]; outer_loop: for (int j = 0; j < signal_length; j++) { int acc = 0; shift_loop: for (int i = min(j, N_COEFF - 1); i >= 0; i--) { #pragma HLS PIPELINE II=1 acc += signal_r[j - i] * coeff_reg[i]; } output_r[j] = acc; } In the ``fir_shift_register`` pragma ``HLS ARRAY_PARTITION`` is used to provide all array values simultaneously by partitioning the array such that each element has its own ports for read/write. Also, since ``outer loop`` uses ``pragma HLS PIPELINE``, ``Vivado HLS`` compiler automatically applies ``loop unrolling`` to the ``shift_loop``. .. code:: cpp int shift_reg[N_COEFF]; #pragma HLS ARRAY_PARTITION variable=shift_reg complete dim=0 init_loop: for (int i = 0; i < N_COEFF; i++) { #pragma HLS PIPELINE II=1 shift_reg[i] = 0; coeff_reg[i] = coeff[i]; } outer_loop: for (int j = 0; j < signal_length; j++) { #pragma HLS PIPELINE II=1 int acc = 0; int x = signal_r[j]; shift_loop: for (int i = N_COEFF - 1; i >= 0; i--) { if (i == 0) { acc += x * coeff_reg[0]; shift_reg[0] = x; } else { shift_reg[i] = shift_reg[i - 1]; acc += shift_reg[i] * coeff_reg[i]; } } output_r[j] = acc; } Following is the log reported while running the design on U250 platform: :: Platform Name: Xilinx INFO: Reading build_dir.hw.xilinx_u250_gen3x16_xdma_4_1_202210_1/fir.xclbin Loading: 'build_dir.hw.xilinx_u250_gen3x16_xdma_4_1_202210_1/fir.xclbin' Trying to program device[0]: xilinx_u250_gen3x16_xdma_shell_3_1 Device[0]: program successful! Example Testdata Signal_Length=1048576 for 1000 iteration |-------------------------+-------------------------| | Kernel (per iteration) | Wall-Clock Time (ns) | |-------------------------+-------------------------| | fir_naive | 327299834 | | fir_shift_register | 4537361 | |-------------------------+-------------------------| | Speedup | 72.1344 | |-------------------------+-------------------------| Note: Wall Clock Time is meaningful for real hardware execution only, not for emulation. Please refer to profile summary for kernel execution time for hardware emulation. TEST PASSED **EXCLUDED PLATFORMS:** - All NoDMA Platforms, i.e u50 nodma etc DESIGN FILES ------------ Application code is located in the src directory. Accelerator binary files will be compiled to the xclbin directory. The xclbin directory is required by the Makefile and its contents will be filled during compilation. A listing of all the files in this example is shown below :: src/fir_naive.cpp src/fir_shift_register.cpp src/host.cpp Access these files in the github repo by `clicking here <https://github.com/Xilinx/Vitis_Accel_Examples/tree/master/cpp_kernels/shift_register>`__. COMMAND LINE ARGUMENTS ---------------------- Once the environment has been configured, the application can be executed by :: ./shift_register <fir XCLBIN>