template class xf::data_analytics::regression::internal::linearLeastSquareRegressionSGDTrainer¶
#include "linearRegression.hpp"
Overview¶
linear least square regression training using SGD framework
Parameters:
| MType | datatype of regression, support double and float | 
| WAxi | AXI interface width to load training data. | 
| WData | Data width of feature data type. | 
| BurstLen | Length of burst read. | 
| D | Number of features that processed each cycle | 
| DDepth | DDepth * D is max feature numbers supported. | 
| RAMWeight | Use which kind of RAM to store weight, could be LUTRAM, BRAM or URAM. | 
| RAMIntercept | Use which kind of RAM to store intercept, could be LUTRAM, BRAM or URAM. | 
| RAMAvgWeight | Use which kind of RAM to store Avg of Weigth, could be LUTRAM, BRAM or URAM. | 
| RAMAvgIntercept | Use which kind of RAM to store Avg of intercept, could be LUTRAM, BRAM or URAM. | 
template < typename MType, int WAxi, int WData, int BurstLen, int D, int DDepth, RAMType RAMWeight, RAMType RAMIntercept, RAMType RAMAvgWeight, RAMType RAMAvgIntercept > class linearLeastSquareRegressionSGDTrainer: public xf::data_analytics::common::SGDFramework
Inherited Members¶
// typedefs typedef Gradient::DataType MType // fields static const int WAxi static const int D static const int Depth ap_uint <32> offset ap_uint <32> rows ap_uint <32> cols ap_uint <32> bucketSize float fraction bool ifJump MType stepSize MType tolerance bool withIntercept ap_uint <32> maxIter Gradient gradProcessor