RNG¶
Defined in <xf_fintech/rng.hpp>¶
class MT19937 class MT2203 class MT19937IcnRng class MT19937BoxMullerNomralRng class MT2203IcnRng class MultiVariateNormalRng
XoShiRo128¶
Defined in <xf_fintech/xoshiro128.hpp>¶
class XoShiRo128PlusPlus class XoShiRo128Plus class XoShiRo128StarStar
SobolRsg¶
Defined in <xf_fintech/sobol_rsg.hpp>¶
class SobolRsg class SobolRsg1D
BrownianBridge¶
Defined in <xf_fintech/brownian_bridge.hpp>¶
class BrownianBridge
TrinomialTree¶
Defined in <xf_fintech/trinomial_tree.hpp>¶
class TrinomialTree
TreeLattice¶
Defined in <xf_fintech/tree_lattice.hpp>¶
class TreeLattice
OrnsteinUhlenbeckProcess¶
Defined in <xf_fintech/ornstein_uhlenbeck_process.hpp>¶
class OrnsteinUhlenbeckProcess
StochasticProcess1D¶
Defined in <xf_fintech/stochastic_process.hpp>¶
class StochasticProcess1D
HestonModel¶
Defined in <xf_fintech/heston_model.hpp>¶
class HestonModel
BicubicSplineInterpolation¶
Defined in <xf_fintech/bicubic_spline_interpolation.hpp>¶
class BicubicSplineInterpolation
CubicInterpolation¶
Defined in <xf_fintech/cubic_interpolation.hpp>¶
class CubicInterpolation
BinomialDistribution¶
bernoulliPMF¶
#include "xf_fintech/bernoulli_distribution.hpp"
template <typename DT> DT bernoulliPMF ( int k, DT p )
bernoulliPMF it implement a probability mass function for bernoulli distribution
Parameters:
DT | data type supported include float and double |
k | k successes in 1 independent Bernoulli trial |
p | p is the probability of success of a single trial. |
Returns:
it belong to [0, 1] and also is a probability value.
bernoulliCDF¶
#include "xf_fintech/bernoulli_distribution.hpp"
template <typename DT> DT bernoulliCDF ( int k, DT p )
bernoulliCDF it implement a cumulative distribution function for bernoulli distribution
Parameters:
DT | data type supported include float and double |
k | k successes in 1 independent Bernoulli trial |
p | p is the probability of success of a single trial. |
Returns:
it belong to [0, 1] and also is a cumulative probability value.
covCoreMatrix¶
#include "xf_fintech/covariance.hpp"
template < typename DT, int N, int M, int U, int V > void covCoreMatrix ( int rows, int cols, DT inMatrix [N][M], DT outCovMatrix [N][N] )
covCoreMatrix calculate the covariance of the input matrix.
Parameters:
DT | data type supported include float and double |
N | maximum supported row |
M | maximum supported column |
U | unroll the 1-d inMatrix to improve throughput, support 4, 8, 16 |
V | unroll the 2-d inMatrix to improve throughput, support 1, 2, 4, 8 |
rows | actual row number |
cols | actual column number |
inMatrix | input cols x rows matrix |
outCovMatrix | output rows x rows covariance matrix |
covCoreStrm¶
#include "xf_fintech/covariance.hpp"
template < typename DT, int DTLEN, int N, int M, int TI, int TO > void covCoreStrm ( int rows, int cols, hls::stream <ap_uint <DTLEN*TI>>& inMatStrm, hls::stream <ap_uint <DTLEN*TO>>& outCovStrm )
covCoreStrm calculate the covariance of the input matrix, the input matrix input in the order of the columns by stream, the output covariance matrix output in the order of the rows by stream.
Parameters:
DT | data type supported include float and double |
DTLEN | length of DT |
N | maximum supported row |
M | maximum supported column |
TI | the bit-width of input stream is TI * DTLEN |
TO | the bit-width of output stream is TO * DTLEN |
rows | actual row number |
cols | actual column number |
inMatStrm | according to stream way to input cols x rows matrix in the order of the columns |
outCovStrm | according to stream way to output rows x rows covariance matrix in the order of the rows |
covReHardThreshold¶
#include "xf_fintech/covariance_regularization.hpp"
template <typename DT> void covReHardThreshold ( int n, DT threshold, hls::stream <DT>& inMatStrm, hls::stream <DT>& outMatStrm )
covReHardThreshold hard-thresholding Covariance Regularization
Parameters:
DT | data type supported include float and double |
n | n x n covariance matrix |
threshold | hard-thresholding parameter |
inMatStrm | a covariance matrix |
outMatStrm | a regularized covariance matrix after hard-thresholding operation |
covReSoftThreshold¶
#include "xf_fintech/covariance_regularization.hpp"
template <typename DT> void covReSoftThreshold ( int n, DT threshold, hls::stream <DT>& inMatStrm, hls::stream <DT>& outMatStrm )
covReSoftThreshold soft-thresholding Covariance Regularization
Parameters:
DT | data type supported include float and double |
n | n x n covariance matrix |
threshold | soft-thresholding parameter |
inMatStrm | a covariance matrix |
outMatStrm | a regularized covariance matrix after soft-thresholding operation |
covReBand¶
#include "xf_fintech/covariance_regularization.hpp"
template <typename DT> void covReBand ( int n, int k, hls::stream <DT>& inMatStrm, hls::stream <DT>& outMatStrm )
covReBand banding Covariance Regularization
Parameters:
DT | data type supported include float and double |
n | n x n covariance matrix |
k | banding parameter |
inMatStrm | a covariance matrix |
outMatStrm | a regularized covariance matrix after banding operation |
covReTaper¶
#include "xf_fintech/covariance_regularization.hpp"
template <typename DT> void covReTaper ( int n, int l, DT h, hls::stream <DT>& inMatStrm, hls::stream <DT>& outMatStrm )
covReTaper tapering Covariance Regularization
Parameters:
DT | data type supported include float and double |
n | n x n covariance matrix |
l | tapering parameter |
h | the ratio between taper l_h and parameter l |
inMatStrm | a covariance matrix |
outMatStrm | a regularized covariance matrix after tapering operation |
gammaCDF¶
#include "xf_fintech/gamma_distribution.hpp"
template <typename DT> DT gammaCDF ( DT a, DT x )
gammaCDF it implement a cumulative distribution function for gamma distribution
Parameters:
DT | data type supported include float and double |
a | is a positive real number |
x | is a positive real number |
Returns:
it belong to [0, 1] and also is a cumulative probability value.
svd¶
#include "xf_fintech/jacobi_svd.hpp"
template < typename dataType, int diagSize > void svd ( dataType dataA [diagSize][diagSize], dataType sigma2 [diagSize][diagSize], dataType dataU_out2 [diagSize][diagSize], dataType dataV_out2 [diagSize][diagSize] )
Jacobi Singular Value Decomposition (SVD).
Parameters:
dataType | data type. |
diagSize | matrix size. |
dataA | diagSize x diagSize matrix |
sigma2 | the decomposed diagonal matrix of dataA |
dataU_out2 | the left U matrix of dataA |
dataV_out2 | the right V matrix of dataA |
linearImpl¶
#include "xf_fintech/linear_interpolation.hpp"
template <typename DT> DT linearImpl ( DT x, int len, DT* arrX, DT* arrY )
linearImpl 1D linear interpolation
Parameters:
DT | data type supported include float and double. |
x | interpolation coordinate x |
len | array of length |
arrX | array of coordinate x |
arrY | array of coordinate y |
Returns:
return interpolation coordinate y
mcSimulation¶
#include "xf_fintech/mc_simulation.hpp"
template < typename DT, typename RNG, typename PathGeneratorT, typename PathPricerT, typename RNGSeqT, int UN, int VariateNum, int SampNum > DT mcSimulation ( ap_uint <16> timeSteps, ap_uint <27> maxSamples, ap_uint <27> requiredSamples, DT requiredTolerance, PathGeneratorT pathGenInst [UN][1], PathPricerT pathPriInst [UN][1], RNGSeqT rngSeqInst [UN][1] )
Monte Carlo Framework implementation.
Parameters:
DT | supported data type including double and float data type, which decides the precision of result, default double-precision data type. |
RNG | random number generator type. |
PathGeneratorT | path generator type which simulates the dynamics of the asset price. |
PathPricerT | path pricer type which calcualtes the option price based on asset price. |
RNGSeqT | random number sequence generator type. |
UN | number of Monte Carlo Module in parallel, which affects the latency and resources utilization. |
VariateNum | number of variate. |
SampNum | the total samples are divided into several steps, SampNum is the number for each step. |
timeSteps | number of the steps for each path. |
maxSamples | the maximum sample number. When reaching it, the simulation will stop. |
requiredTolerance | the tolerance required. If requiredSamples is not set, when reaching the required tolerance, simulation will stop. |
requiredSamples | the samples number required. When reaching the required number, simulation will stop. |
pathGenInst | instance of path generator. |
pathPriInst | instance of path pricer. |
rngSeqInst | instance of random number sequence. |
normalPDF¶
#include "xf_fintech/normal_distribution.hpp"
template <typename DT> DT normalPDF ( DT average, DT sigma, DT x )
normalPDF it implement a probability density function for normal distribution
Parameters:
DT | data type supported include float and double |
average | the expected value of the distribution |
sigma | the standard deviation of the distribution |
x | input of the distribution |
Returns:
return the result of normal distribution
normalCDF¶
#include "xf_fintech/normal_distribution.hpp"
template <typename DT> DT normalCDF ( DT average, DT sigma, DT x )
normalCDF it implement a cumulative distribution function for normal distribution
Parameters:
DT | data type supported include float and double |
average | the expected value of the distribution |
sigma | the standard deviation of the distribution |
x | input of the distribution |
Returns:
return the result of normal distribution
normalICDF¶
#include "xf_fintech/normal_distribution.hpp"
template <typename DT> DT normalICDF ( DT average, DT sigma, DT y )
normalICDF it implement a inverse cumulative distribution function for normal distribution
Parameters:
DT | data type supported include float and double |
average | the expected value of the distribution |
sigma | the standard deviation of the distribution |
y | input of the distribution |
Returns:
return the result of normal distribution
logNormalPDF¶
#include "xf_fintech/normal_distribution.hpp"
template <typename DT> DT logNormalPDF ( DT average, DT sigma, DT x )
logNormalPDF it implement a probability density function for log-normal distribution
Parameters:
DT | data type supported include float and double |
average | the expected value of the distribution |
sigma | the standard deviation of the distribution |
x | input of the distribution |
Returns:
return the result of log-normal distribution
logNormalCDF¶
#include "xf_fintech/normal_distribution.hpp"
template <typename DT> DT logNormalCDF ( DT average, DT sigma, DT x )
logNormalCDF it implement a cumulative distribution function for log-normal distribution
Parameters:
DT | data type supported include float and double |
average | the expected value of the distribution |
sigma | the standard deviation of the distribution |
x | input of the distribution |
Returns:
return the result of log-normal distribution
logNormalICDF¶
#include "xf_fintech/normal_distribution.hpp"
template <typename DT> DT logNormalICDF ( DT average, DT sigma, DT y )
logNormalICDF it implement a inverse cumulative distribution function for log-normal distribution
Parameters:
DT | data type supported include float and double |
average | the expected value of the distribution |
sigma | the standard deviation of the distribution |
y | input of the distribution |
Returns:
return the result of log-normal distribution
pentadiagCr¶
#include "xf_fintech/pentadiag_cr.hpp"
template < typename T, unsigned int P_SIZE, unsigned int logN > void pentadiagCr ( T a [P_SIZE], T b [P_SIZE], T c [P_SIZE], T d [P_SIZE], T e [P_SIZE], T v [P_SIZE], T u [P_SIZE] )
Solves for u in linear system Pu = r
It calls function pentadiag_step for each step until all diagonals instead of main are zeros (or very close to zero). Result U is made by dividing Each of elements of right hand vactor ( v ) by main diagonal ( c )
Structure of input matrix:
Parameters:
T | data type used in whole function (double by default) |
P_SIZE | Size of the operating matrix |
logN | Number of steps for algorithm |
c | Main diagonal |
b | First lower |
a | Second lower |
d | First upper |
e | Second upper |
v | Right hand side vector of length n |
u | Vectors of unknows to solve for |
poissonPMF¶
#include "xf_fintech/poisson_distribution.hpp"
template <typename DT> DT poissonPMF ( unsigned int k, DT m )
poissonPMF it implement a probability mass function for poisson distribution
Parameters:
DT | data type supported include float and double |
k | the number of occurrences |
m | is a positive real number, it is equal to the expected value of a discrete random variable and also to its variance. |
Returns:
it belong to [0, 1] and also is a probability value.
poissonCDF¶
#include "xf_fintech/poisson_distribution.hpp"
template <typename DT> DT poissonCDF ( unsigned int k, DT m )
poissonCDF it implement a cumulative distribution function for poisson distribution
Parameters:
DT | data type supported include float and double |
k | the number of occurrences |
m | is a positive real number, it is equal to the expected value of a discrete random variable and also to its variance. |
Returns:
it belong to [0, 1] and also is a cumulative probability value.
poissonICDF¶
#include "xf_fintech/poisson_distribution.hpp"
template <typename DT> int poissonICDF ( DT m, DT x )
poissonICDF it implement a inverse cumulative distribution function for poisson distribution
Parameters:
DT | data type supported include float and double |
m | is a positive real number, it is equal to the expected value of a discrete random variable and also to its variance. |
x | belong to [0, 1] and also is a cumulative probability value. |
Returns:
the number of occurrences.
polyfit¶
#include "xf_fintech/polyfit.hpp"
template < typename DT, unsigned int D, unsigned int MAX_WIDTH > void polyfit ( const DT evalX [MAX_WIDTH], const DT evalPoints [MAX_WIDTH], unsigned int sizeEval, DT coefficients [D] )
Calculates the polynomial fitting to the D degree of the discrete set of points in ‘evalPoints’.
Parameters:
DT | |
: | The data type of the points |
D | |
: | The degree of the polynomial that will approximate the set of points. |
MAX_WIDTH | |
: | The maximum synthetisable amount of discrete points. |
evalX | |
: | values on the X axis of the set of points. |
evalPoints | |
: | Set of points to be approximated. |
sizeEval | |
: | Length of ‘evalPoints’, must be <= MAX_WIDTH |
coefficients | |
: | Output polynomial coefficients that approximate ‘evalPoints’ to the D degree, in decreasing order of degree. |
#include "xf_fintech/polyfit.hpp"
template < typename DT, unsigned int D, unsigned int MAX_WIDTH > void polyfit ( const DT evalPoints [MAX_WIDTH], const unsigned int sizeEval, DT coefficients [D] )
Calculates the polynomial fitting to the D degree of the discrete set of points in ‘evalPoints’, assuming values on the X axis = [0, 1, 2, 3, …, MAX_WIDTH].
Parameters:
DT | |
: | The data type of the points |
D | |
: | The degree of the polynomial that will approximate the set of points. |
MAX_WIDTH | |
: | The maximum synthetisable amount of discrete points. |
evalPoints | |
: | Set of points to be approximated. |
sizeEval | |
: | Length of ‘evalPoints’, must be <= MAX_WIDTH |
coefficients | |
: | Output polynomial coefficients that approximate ‘evalPoints’ to the D degree, in decreasing order of degree. |
polyval¶
#include "xf_fintech/polyfit.hpp"
template < typename DT, unsigned int D > DT polyval ( const DT coeff [D], const DT x )
Calculates the polynomial evaluation of a set of coefficients at the point ‘x’.
Parameters:
DT | |
: | The data type to be used. |
D | |
: | The degree of the polynomial |
coeff | |
: | The list of polynomial coefficients calculated with polyfit. |
x | |
: | The point at which the polynomial should be evaluated. |
polyint¶
#include "xf_fintech/polyfit.hpp"
template < typename DT, unsigned int D > void polyint ( DT pf [D], DT pfInt [D+1], DT c = 0.0 )
Performs the definite integral of a polynomial fitted function defined by its coefficients.
Parameters:
DT | |
: | The data type to be used. |
D | |
: | The degree of the fitted original polynomial. |
pf | |
: | The original polyfitted coefficients vector to be integrated. |
pfInt | |
: | Output vector containing the definite integral of the original polynomial. Note that it’s length must be 1 more than the original polynomial to hold the extra degree. |
c | |
: | Constant term of the new integral, defaults to 0. |
polyder¶
#include "xf_fintech/polyfit.hpp"
template < typename DT, unsigned int D > void polyder ( DT pf [D], DT pfDer [D-1] )
Performs the first derivate of a polynomial fitted function defined by its coefficients.
Parameters:
DT | |
: | The data type to be used. |
D | |
: | The degree of the fitted original polynomial |
pf | |
: | The original polyfitted coefficients vector to be integrated. |
pfDer | |
: | Output vector containing the derivate of the original polynomial. Note that it’s length must be 1 fewer than the original polynomial. |
trap_integrate¶
#include "xf_fintech/quadrature.hpp"
template <typename DT> static int trap_integrate ( DT a, DT b, DT tol, DT* res, XF_USER_DATA_TYPE* p )
integration function using the adaptive trapezoidal technique
Parameters:
DT | float or DT, determines the precision of the result |
a | lower limit of integration |
b | upper limit of integration |
tol | required tolerance of the result |
res | the result of the integration |
p | pointer to structure containing parameters for integrating function |
Returns:
1 - success, 0 - fail (due to stack limitation)
simp_integrate¶
#include "xf_fintech/quadrature.hpp"
template <typename DT> static int simp_integrate ( DT a, DT b, DT tol, DT* res, XF_USER_DATA_TYPE* p )
integration function using the adaptive simpson 1/3 technique
Parameters:
DT | float or DT, determines the precision of the result |
a | lower limit of integration |
b | upper limit of integration |
tol | required tolerance of the result |
res | the result of the integration |
p | pointer to structure containing parameters for integrating function |
Returns:
1 - success, 0 - fail (due to stack limitation)
romberg_integrate¶
#include "xf_fintech/quadrature.hpp"
template <typename DT> static int romberg_integrate ( DT a, DT b, DT tol, DT* res, XF_USER_DATA_TYPE* p )
integration function using the romberg technique Based on https://en.wikipedia.org/wiki/Romberg%27s_method
Parameters:
DT | float or DT, determines the precision of the result |
a | lower limit of integration |
b | upper limit of integration |
tol | required tolerance of the result |
res | the result of the integration |
p | pointer to structure containing parameters for integrating function |
Returns:
1 - success, 0 - fail (due to stack limitation)
boxMullerTransform¶
#include "xf_fintech/rng.hpp"
template <typename mType> void boxMullerTransform ( mType u1, mType u2, mType& z1, mType& z2 )
Box-Muller transform from uniform random number to normal random number.
Parameters:
mType | data type |
u1 | first uniform random number input. Notice that it should not be zero. |
u2 | second uniform random number input |
z1 | first normal random number output |
z2 | second normal random number output |
inverseCumulativeNormalPPND7¶
#include "xf_fintech/rng.hpp"
template <typename mType> mType inverseCumulativeNormalPPND7 (mType input)
Inverse Cumulative transform from random number to normal random number.
Reference: Algorithm AS 241, The Percentage Points of the Normal Distribution by Michael J. Wichura.
Parameters:
mType | data type. |
input | random number input. |
Returns:
normal random number.
inverseCumulativeNormalAcklam¶
#include "xf_fintech/rng.hpp"
template <typename mType> mType inverseCumulativeNormalAcklam (mType input)
Inverse CumulativeNormal using Acklam’s approximation to transform uniform random number to normal random number.
Reference: Acklam’s approximation: by Peter J. Acklam, University of Oslo, Statistics Division.
Parameters:
mType | data type. |
input | input uniform random number |
Returns:
normal random number
trsvCore¶
#include "xf_fintech/trsv.hpp"
template < class T, unsigned int N, unsigned int logN, unsigned int NCU > void trsvCore ( T inlow [N], T indiag [N], T inup [N], T inrhs [N] )
Tridiagonal linear solver It solves tridiagonal linear system of equations by eliminating upper and lower diagonals To get result (U) divide each element of inrhs by coresponding element of main diagonal indiag .
Parameters:
T | data type |
N | matrix size |
logN | log2(N)(TOREMOVE) |
NCU | number of compute units |
inlow | lower diagonal |
indiag | diagonal |
inup | upper diagonal |
inrhs | right-hand side |