‘aie’ Dialect

This is a dialect for describing netlists of AIE components in a Versal device. It focuses on representing logical stream connections between cores and DMAs, along with the implementation of those logical connections in the various switch components. In the dialect, a switch is referred to as switchbox to avoid confusion with the switch keyword in C/C++.

[TOC]

Operations

aie.amsel (::xilinx::AIE::AMSelOp)

Declare an arbiter of a switchbox with a master select value (arbiter + msel)

Syntax:

operation ::= `aie.amsel` `<` $arbiterID `>` `(` $msel `)` attr-dict

A combination of arbiter ID and master select (msel) value. This op is used as a pointer to select the arbiter for routing a packet-switched flow

Example:

    %a0_0 = aie.amsel<5>(3)
    %m1 = aie.masterset("East" : 0, %a0_0 )
    aie.packet_rules("South" : 0) {
      aie.rule(0x1F, 0x10, %a0_0)
    }

This code associates arbiter 5 with msel=3. A packet-switched connection is made routing traffic from the South:0 port to the East:0 port using this arbiter. There are 6 arbiters per switchbox and 4 possible master select values. See also MasterSetOp, PacketRulesOp, and PacketRuleOp for more information.

Traits: HasParent<SwitchboxOp>

Interfaces: InferTypeOpInterface

Attributes:

AttributeMLIR TypeDescription
arbiterID::mlir::IntegerAttr8-bit signless integer attribute whose minimum value is 0 whose maximum value is 5
msel::mlir::IntegerAttr8-bit signless integer attribute whose minimum value is 0 whose maximum value is 3

Results:

Result Description
«unnamed» index

aie.bd_chain (::xilinx::AIE::BDChainOp)

Definition of a Parametrizable Chain of Buffer Descriptors

This operation allows you to define buffer descriptor chains with parametrizable inputs. This is useful for common patterns such as double buffering (ping-pong) that may look identical but use different input/output buffers and locks. Currently, only buffers and locks are parametrizable.

Once defined, an abstract BD chain can be used elsewhere using AIEX ops in the runtime sequence. In the future, abstract BD chains will also be usable elsewhere, inside the static configuration. At its usage sites, the abstract BD chain will be concretized with the given input arguments.

Traits: SkipAccessibilityCheckTrait

Interfaces: Symbol

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::StringAttrstring attribute

aie.buffer (::xilinx::AIE::BufferOp)

Declare a buffer

Syntax:

operation ::= `aie.buffer` `(` $tile `)`
              attr-dict `:` type($buffer)
              custom<BufferInitialValue>(ref(type($buffer)), $initial_value)

This operation instantiates a buffer that belongs to a Memory Module of a tile.

Example:

  %tile33 = aie.tile(3, 3)
  %buf = aie.buffer(%tile33) : memref<256xi64>

This operation represents a buffer in tile (3, 3) of 256 elements, each a 64-bit integer.

Interfaces: OpAsmOpInterface, TileElement

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::StringAttrstring attribute
address::mlir::IntegerAttr32-bit signless integer attribute
initial_value::mlir::ElementsAttrconstant vector/tensor attribute
mem_bank::mlir::IntegerAttr32-bit signless integer attribute

Operands:

Operand Description
tile index

Results:

Result Description
buffer memref of any type values

aie.cascade_flow (::xilinx::AIE::CascadeFlowOp)

A cascade connection between tiles

Syntax:

operation ::= `aie.cascade_flow` `(` $source_tile `,` $dest_tile `)` attr-dict

The aie.cascade_flow operation represents a cascade connection between two aie.tile operations.
During lowering, this is replaced by aie.configure_cascade operations for each aie.tile based on their relative placement to one another.

Example:

  %tile03 = aie.tile(0, 3)
  %tile13 = aie.tile(1, 3)
  aie.cascade_flow(%tile03, %tile13)

Operands:

Operand Description
source_tile index
dest_tile index

aie.configure_cascade (::xilinx::AIE::ConfigureCascadeOp)

An op to configure the input and output directions of the cascade for a single AIE tile

Syntax:

operation ::= `aie.configure_cascade` `(` $tile `,` $inputDir `,` $outputDir `)` attr-dict

An operation to configure the cascade on a single tile in both the input and the output directions.

Example:

  %tile00 = aie.tile(1, 3)
  aie.configure_cascade(%tile00, West, East)

Configures the input cascade port of %tile00 to the West direction, and the output port to the East direction.

Traits: HasParent<DeviceOp>

Attributes:

AttributeMLIR TypeDescription
inputDirxilinx::AIE::CascadeDirAttr
Directions for cascadeEnum cases: * South (`South`) * West (`West`) * North (`North`) * East (`East`)
outputDirxilinx::AIE::CascadeDirAttr
Directions for cascadeEnum cases: * South (`South`) * West (`West`) * North (`North`) * East (`East`)

Operands:

Operand Description
tile index

aie.connect (::xilinx::AIE::ConnectOp)

A circuit-switched connection inside a switchbox

Syntax:

operation ::= `aie.connect` `<` $source_bundle `:` $source_channel `,` $dest_bundle `:` $dest_channel `>` attr-dict

This operation represents a programmed circuit-switched connection in a stream switch. It associates a source bundle and source channel with a destination bundle and a destination channel. This operation must exist within an aie.switchbox or aie.shim_switchbox operation. All of the aie.connect operations in a switchbox must have different destinations. All of the aie.connect operations must also have a destination which is different from all of the aie.masterset operations in the same switchbox.

Example:

%tile = aie.tile(1, 1)
aie.switchbox(%tile) {
  aie.connect<"West" : 0, "Core" : 1>
}

Traits: HasParent<SwitchboxOp, ShimMuxOp>

Attributes:

AttributeMLIR TypeDescription
source_bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)
source_channel::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0
dest_bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)
dest_channel::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0

aie.core (::xilinx::AIE::CoreOp)

Declare a core module

Syntax:

operation ::= `aie.core` `(` $tile `)` regions attr-dict

This operation represents an AIEngine processor core belonging to a tile. The region of a CoreOp contains code that gets run on the AIE core. This code will typically be outlined into the LLVM dialect, eventually resulting in a binary file for each core. The name of this file can be be specified using the elf_file attribute.

This op has an optional stackSize attribute, to control the amount of memory (in bytes) reserved for the stack. The default value is 1024. The stack (and other data allocations) are always stored in the local core memory, to avoid conflicts with static data allocations in other cores.

This op has an optional dynamic_objfifo_lowering attribute, to finely control whether the objectfifos in this core should be lowered using the dynamic runtime lowering.

Examples:

%tile = aie.tile(1, 1)
%lock11_8 = aie.lock(%tile, 8)
aie.core(%tile) {
  aie.use_lock(%lock11_8, "Acquire", 1)
  aie.use_lock(%lock11_8, "Release", 0)
  aie.end
}
%tile = aie.tile(3, 3)
aie.core(%tile) {
  aie.end
} { stackSize = 2048 : i32, elf_file = "core_33.elf" }

Interfaces: FlowEndPoint, InferTypeOpInterface, OpAsmOpInterface, TileElement

Attributes:

AttributeMLIR TypeDescription
stack_size::mlir::IntegerAttr32-bit signless integer attribute
link_with::mlir::StringAttrstring attribute
elf_file::mlir::StringAttrstring attribute
dynamic_objfifo_lowering::mlir::BoolAttrbool attribute

Operands:

Operand Description
tile index

Results:

Result Description
«unnamed» index

aie.debug (::xilinx::AIE::DebugOp)

Capture a value for debugging

Syntax:

operation ::= `aie.debug` `(` $arg `:` type($arg) `)` attr-dict

Output the given value for debugging. This is primarily used for simulation.

Operands:

Operand Description
arg any type

aie.device (::xilinx::AIE::DeviceOp)

Define an AIE design targetting a complete device

Syntax:

operation ::= `aie.device` `(` $device `)` regions attr-dict

This operation describes a design that executes on a particular AIEngine device. It exists at the toplevel of a design; although currently it does not replace the default toplevel module in MLIR, the intention is that this could be the case in the future.

When using this operation, all resources in a physical device are available and the design does not need to be concerned with other potential users of a physical device. In addition, within an aie.device operation, tile addresses are absolute coordinates and are not intended to describe a relocatable design. To describe a portion of a device which may be relocatable, the intention would be to provide another operation, for instance maybe aie.segment. The design itself is described using a region of code contained by the device operation.

Example:

aie.device(xcvc1902) {
  %tile = aie.tile(1, 1)
  %CORE = aie.core(%tile) { ... }
}

Traits: HasParent<mlir::ModuleOp>, IsolatedFromAbove, SingleBlockImplicitTerminator<EndOp>, SingleBlock, SymbolTable

Interfaces: AIETarget

Attributes:

AttributeMLIR TypeDescription
devicexilinx::AIE::AIEDeviceAttr
AIE DeviceEnum cases: * xcvc1902 (`xcvc1902`) * xcve2302 (`xcve2302`) * xcve2802 (`xcve2802`) * npu1 (`npu1`) * npu1_1col (`npu1_1col`) * npu1_2col (`npu1_2col`) * npu1_3col (`npu1_3col`) * npu1_4col (`npu1_4col`) * npu2 (`npu2`)

aie.dma (::xilinx::AIE::DMAOp)

An op to describe a set of DMA operations.

Syntax:

operation ::= `aie.dma` `(` $channel_dir `,` $channel_index `)`
              attr-dict ` `
              `[`regions`]`

Traits: HasParent<MemOp, MemTileDMAOp, ShimDMAOp>, NoTerminator

Interfaces: InferTypeOpInterface, OpAsmOpInterface

Attributes:

AttributeMLIR TypeDescription
channel_dirxilinx::AIE::DMAChannelDirAttr
DMA Channel directionEnum cases: * S2MM (`S2MM`) * MM2S (`MM2S`)
channel_index::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0
loop::mlir::BoolAttrbool attribute
repeat_count::mlir::IntegerAttr32-bit signless integer attribute
sym_name::mlir::StringAttrstring attribute

Results:

Result Description
valid 1-bit signless integer

aie.dma_bd (::xilinx::AIE::DMABDOp)

Declare a dma buffer descriptor op

This operation describes a buffer descriptor for DMA operations. In particular, it specifies what buffer to use, and optionally:

1. the offset into the buffer;
2. the transfer length;
3. the sizes and strides for n-d tensor addressing (described below);
4. the "bd_id" with which to associate the buffer descriptor (most often left empty);
5. the number of zeros to pad before and after every dimension of an n-d tensor (described below).

offset, len, sizes and strides are all denominated in element width; e.g., transferring the whole of memref<512xi32> means len == 512, and also while transferring the whole of memref<512xi16>, len == 512.

The only caveat to this “everything-is-in-terms-of-element-width” rule is regarding the inner-most dimension’s stride (see Important gotcha regarding strides below).

dma_bd ops must appear in their own BBs (basic blocks) and such BBs can (optionally) include use_lock operations (specifying an “acquire” and a “release” lock; see the use_lock operation) and subsequent BDs in a “chain” of BDs (using next_bd as a “jump” to the next BB which contains a dma_bd).

Example:

  // this defines a BD that uses lock %lck0 and buffer %buf0
  ^bd5:
    aie.use_lock(%lck, "Acquire", 0)
    // transfer the first 32 elements of the memref
    aie.dma_bd(<$buf0 : memref<128xi32>, 0, 32)
    aie.use_lock(%lck, "Release", 1)
    aie.next_bd ^bd6 // point to the next bb, which describes the next buffer descriptor
  ^bd6:
    aie.use_lock(%lck, "Acquire", 1)
    // transfer the last 32 elements of the memref
    aie.dma_bd(<$buf1 : memref<128xi32>, 96, 32)
    aie.use_lock(%lck, "Release", 0)
    aie.next_bd ^end

  ...

  // this defines a BD that does not use any lock
  ^bd8:
    aie.dma_bd(<$buf2 : memref<64xi32>, 0, 64)

Background/context

A DMA channel in a Memory Module can process one buffer descriptor after another by chaining them. There are 16 buffer descriptors per Core memory module and 48 buffer descriptors per Memtile memory module. They are shared by four DMA channels (or 12).

DMA Data Layout Transformations on AIE-ML Devices

AIE-ML devices can apply data layout transformations at the buffer descriptor level. These transformation are described by strides and sizes in up to three dimensions (four dimensions on memtiles). Strides and sizes can be supplied to the dma_bd through an optional argument, an array of “tuple-like” attributes bd_dim_layout<size, stride>.

The first element of this array gives the outer-most dimension’s stride and size, the last element of the array gives the inner-most dimension’s stride and size. We can model the access pattern strides and sizes generate by a series of nested loops. In general, a set of strides and sizes like this…

[<size_2, stride_2>, <size_1, stride_1>, <size_0, stride_0>]

…translates to an access pattern that can be expressed like this:

int *buffer;  // i32
for(int i = 0; i < size_2; i++)
  for(int j = 0; j < size_1; j++)
    for(int k = 0; k < size_0; k++)
      // access/store element at/to buffer[  i * stride_2
      //                                   + j * stride_1
      //                                   + k * stride_0]

The following example shows an access pattern that corresponds to alternating between even and odd elements of the buffer/stream every 8 elements:

aie.dma_bd(%buf : memref<128xi32>, 0, 128, [<8, 16>, <2, 1>, <8, 2>])

implies

for(int i = 0; i < 8 /*size_2*/; i++)
  for(int j = 0; j < 2 /*size_1*/; j++)
    for(int k = 0; k < 8 /*size_0*/; k++)
      // access/store element at/to index (i * 16 /*stride_2*/ + j * 1 /*stride_1*/ + k * 2 /*stride_0*/)

Important gotcha regarding strides

All strides are expressed in multiples of the element width (just like len and offset) with the caveat that the inner-most dimension’s stride must be 1.

DMA constant padding on AIE-ML Devices

AIE-ML devices can apply constant padding at the buffer descriptor level, described with pairs of padding counts before and after a dimension, to all dimensions in the data layout transformations. The padding counts can be supplied to the dma_bd through an optional argument, an array of “tuple-like” attributes bd_pad_layout<const_pad_before, const_pad_after>, followed by an optional argument const_val (default is 0). All counts are expressed in multiples of the element width.

Attributes:

AttributeMLIR TypeDescription
offset::mlir::IntegerAttr32-bit signless integer attribute
len::mlir::IntegerAttr32-bit signless integer attribute
dimensions::xilinx::AIE::BDDimLayoutArrayAttr
pad_dimensions::xilinx::AIE::BDPadLayoutArrayAttr
pad_value::mlir::IntegerAttr32-bit signless integer attribute
bd_id::mlir::IntegerAttr32-bit signless integer attribute
packet::xilinx::AIE::PacketInfoAttr Tuple encoding the type and header of a packet;
next_bd_id::mlir::IntegerAttr32-bit signless integer attribute

Operands:

Operand Description
buffer memref of any type values

aie.dma_bd_packet (::xilinx::AIE::DMABDPACKETOp)

Enable packet headers for a dma block descriptor

Syntax:

operation ::= `aie.dma_bd_packet` `(` $packet_type `,` $packet_id `)` attr-dict

This operation enables packet headers for a block descriptor for DMA operations. In particular, it specifies the packet type (3-bits) and packet ID (5-bits).

This operation must be used in an MLIR block that lives inside a MemOp’s region, and before aie.dma_bd. The block descriptor specifies what lock to use and the buffer configuration.

Example:

  // this defines a BD that uses lock %lck0 and buffer %buf0
  ^bd5:
    aie.use_lock(%lck, "Acquire", 0)
    aie.dma_bd_packet(0x4, 0xD)
    aie.dma_bd(<$buf0 : memref<512xi32>, 0, 512>, 1)
    aie.use_lock(%lck, "Release", 1)
    br ^bd6 // point to the next Block, which is also a different Block Descriptor

Attributes:

AttributeMLIR TypeDescription
packet_type::mlir::IntegerAttr32-bit signless integer attribute
packet_id::mlir::IntegerAttr32-bit signless integer attribute

aie.dma_start (::xilinx::AIE::DMAStartOp)

An op to start DMA

Syntax:

operation ::= `aie.dma_start` `(` $channel_dir `,` $channel_index `,` $dest `,` $chain (`,` `repeat_count` `=` $repeat_count^)? `)` attr-dict

This operation declares a DMA channel to be used for data transfer. It usually exists inside either a MemOp (representing a TileDMA), a MemTileDMAOp (representing a DMA in a MemTile), or in a ShimDMAOp (representing a ShimDMA). A channel is defined by a direction (i.e., MM2S or S2MM) and an index.

Example:

    aie.dma_start("MM2S", 0, ^bd0, ^end)
  ^bd0:
    aie.use_lock(%lock0, "Acquire", 0)
    aie.dma_bd(%buffer : memref<16 x f32>, 0, 16)
    aie.use_lock(%lock0, "Release", 1)
    br ^bd0
  ^end:
    aie.end

Conceptually, the aie.dma_start operation is a terminator that either passes control to a basic block containing DMA operations (through its first successor) or to a basic block for another dma_start, to an aie.end operation.

Traits: HasParent<MemOp, MemTileDMAOp, mlir::func::FuncOp, ShimDMAOp>, Terminator

Interfaces: InferTypeOpInterface

Attributes:

AttributeMLIR TypeDescription
channel_dirxilinx::AIE::DMAChannelDirAttr
DMA Channel directionEnum cases: * S2MM (`S2MM`) * MM2S (`MM2S`)
channel_index::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0
repeat_count::mlir::IntegerAttr32-bit signless integer attribute

Results:

Result Description
valid 1-bit signless integer

Successors:

Successor Description
dest any successor
chain any successor

aie.end (::xilinx::AIE::EndOp)

End op

Syntax:

operation ::= `aie.end` attr-dict

A generic terminator operation for AIE ops’ regions.

Traits: Terminator

aie.event (::xilinx::AIE::EventOp)

Event instruction

Syntax:

operation ::= `aie.event` `(` $val `)` attr-dict

Event instruction.

Attributes:

AttributeMLIR TypeDescription
val::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0 whose maximum value is 1

aie.external_buffer (::xilinx::AIE::ExternalBufferOp)

Declare a buffer in external memory

Syntax:

operation ::= `aie.external_buffer` attr-dict `:` type($buffer)

This operation represents a buffer that exists in some physical location in a device, most likely external memory. The exact address of the external buffer is passed by the mlir_aie_external_set_addr() and mlir_aie_external_set_addr_myBuffer_ functions in the associated .cpp test file.

These external buffers are used within the buffer descriptors of a shim_dma, i.e., within AIE_DMABdOp operations of a AIE_ShimDMAOp.

Example:

  %buf = aie.external_buffer : memref<256xi64>

This operation represents an external buffer.

Interfaces: OpAsmOpInterface

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::StringAttrstring attribute

Results:

Result Description
buffer memref of any type values

aie.flow (::xilinx::AIE::FlowOp)

A logical circuit-switched connection between cores

Syntax:

operation ::= `aie.flow` `(` $source `,` $source_bundle `:` $source_channel `,` $dest `,` $dest_bundle `:` $dest_channel `)` attr-dict

The aie.flow operation represents a circuit switched connection between two endpoints, usually aie.tile operations. During routing, this is replaced by aie.connect operations which represent the programmed connections inside a switchbox, along with aie.wire operations which represent physical connections between switchboxes and other components.

Example:

  %00 = aie.tile(0, 0)
  %11 = aie.tile(1, 1)
  %01 = aie.tile(0, 1)
  aie.flow(%00, "DMA" : 0, %11, "Core" : 1)

Attributes:

AttributeMLIR TypeDescription
source_bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)
source_channel::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0
dest_bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)
dest_channel::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0

Operands:

Operand Description
source index
dest index

aie.get_cascade (::xilinx::AIE::GetCascadeOp)

An op to read from a cascading stream from a neighboring core

Syntax:

operation ::= `aie.get_cascade` `(` `)` attr-dict `:` type($cascade_value)

An op to read from a cascading stream from a neighboring core. The result type of this operation must have a size that matches the cascade size, which is architecture-dependent. e.g. AIE1: i384 or vector<8xi48> AIE2: i512 or vector<16xi32>

Traits: HasParent<CoreOp>

Results:

Result Description
cascade_value any type

aie.get_stream (::xilinx::AIE::GetStreamOp)

An op to read from a stream channel/port of a switchbox

Syntax:

operation ::= `aie.get_stream` `(` $channel `:` type($channel) `)` attr-dict `:` type($stream_value)

An op to read from a stream channel/port of a switchbox.

Traits: HasParent<CoreOp>

Operands:

Operand Description
channel integer

Results:

Result Description
stream_value 32-bit float or 32-bit signless integer or 128-bit signless integer

aie.lock (::xilinx::AIE::LockOp)

Declare a physical lock

Syntax:

operation ::= `aie.lock` `(` $tile (`,` $lockID^ )? `)` attr-dict

This operation creates a physical lock. For this operation the lockID variable is optional. However, if that is the case then the lockID must be assigned using the AIEAssignLockIDs pass.

Example:

  %tile33 = aie.tile(3, 3)
  %lck = aie.lock(%tile33, 7)

This operation represents a lock that lives in the Memory module of Tile(3, 3) with a lockID of 7

Case when LockID is not assigned: Before AIEAssignLockIDs: %tile33 = aie.tile(3) After AIEAssignLockIDs: %tile33 = aie.tile(3, $assigned_value)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), OpAsmOpInterface, TileElement

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
lockID::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0
init::mlir::IntegerAttr32-bit signless integer attribute
sym_name::mlir::StringAttrstring attribute

Operands:

Operand Description
tile index

Results:

Result Description
«unnamed» index

aie.masterset (::xilinx::AIE::MasterSetOp)

Packet switched input connection

Syntax:

operation ::= `aie.masterset` `(` $dest_bundle `:` $dest_channel `,` $amsels `)` attr-dict

A packet switched connection inside a switchbox. This operation specifies the configuration for a master port.

Example:

  %a0_m2 = aie.amsel<0>(2)
  aie.masterset("Core" : 0, %a0_m2)

The code will configure the master port <”Core” : 0> to use arbiter 0 with msel 2 (see AMSelOp for more details regarding AMSel)

In the current architecture, a master port can only be associated with one arbiter. However, a master port can be activated by different msels from one arbiter

Example:

  %a1_0 = aie.amsel<1>(0)
  %a1_1 = aie.amsel<1>(1)
  %a2_3 = aie.amsel<2>(3)

  aie.masterset("West" : 2, %a1_0, %a2_3) // this is illegal, please don't do this
  aie.masterset("West" : 3, %a1_0, %a1_1) // this is OK

Traits: HasParent<SwitchboxOp>

Interfaces: InferTypeOpInterface

Attributes:

AttributeMLIR TypeDescription
dest_bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)
dest_channel::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0
keep_pkt_header::mlir::BoolAttrbool attribute

Operands:

Operand Description
amsels variadic of index

Results:

Result Description
«unnamed» index

aie.mem (::xilinx::AIE::MemOp)

Declare a memory op

Syntax:

operation ::= `aie.mem` `(` $tile `)` regions attr-dict

This operation creates a Memory module that belongs to a tile. The region of a MemOp is used to setup the DMAs and Block Descriptors. See DMAStartOp and DMABdOp for more concrete examples on DMAs and Block Descriptors.

Example:

  m73 = aie.mem(%t73) {
      %srcDma = aie.dma_start("S2MM", 0, ^bd0, ^end)
    ^bd0:
      aie.use_lock(%lock, "Acquire", 0)
      aie.dma_bd(%buf : memref<64xi16>, 0, 64)
      aie.use_lock(%lock, "Release", 1)
      aie.next_bd ^bd0
    ^end:
      aie.end
  }

Create the memory module for tile %t73 and setup one DMA channel and one Buffer Descriptor.

Traits: HasValidBDs, HasValidDMAChannels

Interfaces: FlowEndPoint, InferTypeOpInterface, OpAsmOpInterface, TileElement

Operands:

Operand Description
tile index

Results:

Result Description
«unnamed» index

aie.memtile_dma (::xilinx::AIE::MemTileDMAOp)

Declare a memtile_dma op

Syntax:

operation ::= `aie.memtile_dma` `(` $tile `)` regions attr-dict

This operation describes a DMA inside an AIE2 MemTile. The region of the op is used to setup the DMAs and Block Descriptors. See DMAStartOp and DMABdOp for more concrete examples on DMAs and Block Descriptors.

This operation is restricted to certain compatible tiles in AIE2 devices: xcve2302: row 1 xcve2802: row 1 and 2

Example:

  m73 = aie.memtile_dma(%t71) {
      %srcDma = aie.dma_start("S2MM", 0, ^bd0, ^end)
    ^bd0:
      aie.use_lock(%lock, "Acquire", 0)
      aie.dma_bd(%buf : memref<64xi16>, 0, 64>, 0)
      aie.use_lock(%lock, "Release", 1)
      aie.next_bd ^bd0
    ^end:
      aie.end
  }

Create a description for tile %t73 and setup one DMA channel and one Buffer Descriptor.

Traits: HasValidBDs, HasValidDMAChannels

Interfaces: FlowEndPoint, InferTypeOpInterface, OpAsmOpInterface, TileElement

Operands:

Operand Description
tile index

Results:

Result Description
«unnamed» index

aie.next_bd (::xilinx::AIE::NextBDOp)

The next buffer descriptor

Syntax:

operation ::= `aie.next_bd` $dest attr-dict

This operation terminates the basic block describing a buffer descriptor inside a tile or shim DMA operation. It references a single following buffer descriptor. Note that unlike other terminators (like cf.br), canonicalization should not remove the next_bd terminator, since it would result in invalid buffer descriptors.

Example:

  m73 = aie.mem(%t73) {
      %srcDma = aie.dma_start("S2MM", 0, ^bd0, ^end)
    ^bd0:
      aie.use_lock(%lock, "Acquire", 0)
      aie.dma_bd(%buf : memref<64xi16>, 0, 64)
      aie.use_lock(%lock, "Release", 1)
      aie.next_bd ^bd0
    ^end:
      aie.end
  }

Traits: Terminator

Successors:

Successor Description
dest any successor

aie.objectfifo (::xilinx::AIE::ObjectFifoCreateOp)

Create a circular buffer or channel between two tiles

Syntax:

operation ::= `aie.objectfifo` $sym_name
              `(`
              custom<ObjectFifoProducerTile>($producerTile, $dimensionsToStream) `,`
              `{`
              custom<ObjectFifoConsumerTiles>($consumerTiles, $dimensionsFromStreamPerConsumer)
              `}`
              `,`
              $elemNumber
              `)` attr-dict `:` $elemType
              custom<ObjectFifoInitValues>(ref($elemNumber), ref($elemType), $initValues)

The aie.objectFifo operation creates a circular buffer established between a producer and one or more consumers, which are aie.tile operations. The aie.objectFifo instantiates the given number of buffers (of given output type) and their locks in the Memory Module of the appropriate tile(s) after lowering, based on tile-adjacency. These elements represent the conceptual depth of the objectFifo or, more specifically, of its object pool.

For the producer and for each consumer, a different size (i.e., element number) can be specified as an array of integer values. This will take effect in the case of consumers placed on tiles non-adjacent to the producer. Otherwise, the producer size will be applied. If a single size is specified, it will be applied to both producer and consumers.

This operation is then converted by the AIEObjectFifoStatefulTransformPass into aie.buffers and their associated aie.locks. The pass also establishes Flow and DMA operations between the producer and consumer tiles if they are not adjacent.

1-to-1 tile example:

  aie.objectfifo @of1 (%tile12, { %tile23 }, 4 : i32) : !aie.objectfifo<memref<16xi32>>

This operation creates an objectFifo between %tile12 and %tile23 of 4 elements, each a buffer of 16 32-bit integers. Note: If there are no ObjectFifoAcquireOps corresponding to this objectFifo on the cores of %tile12 and %tile23, then the depths of the object pools on each tile will be 4, as specified. Otherwise, the cores are scanned and the highest number of acquired elements (+1 for prefetching) will be used instead, to ensure minimal resource usage.

1-to-2 tiles broadcast example:

  aie.objectfifo @of2 (%tile12, { %tile13, %tile23 }, 4 : i32) : !aie.objectfifo<memref<16xi32>>

This operation creates an objectFifo between %tile12 and tiles %tile13, %tile23 of 4 elements, each a buffer of x16 32-bit integers.

1-to-2 tiles broadcast with explicit sizes example:

  aie.objectfifo @of3 (%tile12, { %tile13, %tile23 }, [2, 3, 4]) : !aie.objectfifo<memref<16xi32>>

This operation creates an objectFifo between %tile12, %tile13 and %tile23. The depths of the objectFifo object pool at each tile are respectively 2, 3 and 4 for tiles %tile12, %tile13 and %tile23. This overrides the depth analysis specified in the first example.

Data Layout Transformations on AIE-ML devices

On AIE-ML devices, objectFifos can also apply data layout transformations by using the DMAs n-dimensional address generation scheme. Two transformations can be applied for an objectFifo: one on the producer side, given by a dimensionsToStream attribute, and one transformation on the consumer side, given by a dimensionsFromStream attribute. See the DMABDOp documentation for a description of strides and sizes. The dimensionsToStream and dimensionsFromStream optional attributes are given directly following the producer or consumer tile declaration. Different transformations can be specified for each consumer. See example below.

Note that using data layout transformations will cause DMAs to be used even between adjacent tiles whose objectFifos would otherwise use shared memory.

Further note that data layout transforms always apply at a granularity of i32s, irrespective of the used memref data type. This is an architectural requirement. Hence, a stride of 4 always expresses 4 i32s, i.e. 16 bytes.

The following example shows an objectFifo which transposes a 16x16 matrix of i32s on the producer side using strides and sizes. No transformation is applied on the consumer side of %tile13 (in this case the fromStream attribute may also be left off), and a transformation on %tile23 first gives all even indices from the stream, followed by all odd indices:

  aie.objectfifo @of4 (%tile12 dimensionsToStream [<16, 1>, <16, 16>, <1,1>],
                       {
                        %tile13 dimensionsFromStream [],
                        %tile23 dimensionsFromStream [<2, 1>, <128, 2>]
                       }, 2 : i32
                      ) : !aie.objectfifo<memref<256xi32>>

Traits: HasParent<DeviceOp>

Interfaces: Symbol

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::StringAttrstring attribute
elemNumber::mlir::Attribute32-bit signless integer attribute whose minimum value is 0 or array attribute
elemType::mlir::TypeAttrtype attribute of AIE objectFifo type
dimensionsToStream::xilinx::AIE::BDDimLayoutArrayAttr
dimensionsFromStreamPerConsumer::xilinx::AIE::BDDimLayoutArrayArrayAttr
via_DMA::mlir::BoolAttrbool attribute
plio::mlir::BoolAttrbool attribute
disable_synchronization::mlir::BoolAttrbool attribute
via_shared_mem::mlir::IntegerAttr32-bit signless integer attribute
repeat_count::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 1
initValues::mlir::ArrayAttrarray of ElementsAttr
padDimensions::xilinx::AIE::BDPadLayoutArrayAttr

Operands:

Operand Description
producerTile index
consumerTiles variadic of index

aie.objectfifo.acquire (::xilinx::AIE::ObjectFifoAcquireOp)

Acquire operation to lock and return objects of an ObjectFifo

Syntax:

operation ::= `aie.objectfifo.acquire` attr-dict $objFifo_name `(` $port `,` $size `)` `:` type($subview)

The aie.objectFifo.acquire operation first acquires the locks of the next given number of objects in the objectFifo. The mode it acquires the locks in is chosen based on the port (producer: acquire for write, consumer: acquire for read). Then, it returns a subview of the acquired objects which can be used to access them.

This operation is then converted by the AIEObjectFifoStatefulTransformPass into aie.use_lock operations on the locks of the objectFifo objects that will be acquired. Under the hood, the operation only performs new acquires if necessary. For example, if two objects have been acquired in the past and none have yet to be released by the same process, then performing another acquire operation on the same objectFifo within the same process of size two or less will not result in any new use_lock operations (and for size greater than two, only (size - 2) use_lock operations will be performed).

Example:

  %subview = aie.objectfifo.acquire @of1 (Consume, 2) : !aie.objectfifosubview<memref<16xi32>>

This operation acquires the locks of the next two objects in the objectFifo named @of1 from its consumer port and returns a subview of the acquired objects.

Attributes:

AttributeMLIR TypeDescription
portxilinx::AIE::ObjectFifoPortAttr
Ports of an object FIFOEnum cases: * Produce (`Produce`) * Consume (`Consume`)
objFifo_name::mlir::FlatSymbolRefAttrflat symbol reference attribute
size::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0

Results:

Result Description
subview AIE ObjectFifoSubview type

Links two objectFifos through an intermediary tile’s DMA

Syntax:

operation ::= `aie.objectfifo.link` $fifoIns `->` $fifoOuts `(` $src_offsets $dst_offsets `)` attr-dict

The aie.objectFifo.link operation marks two or more objectFifos as linked. This implies that the objectFifos form one dataflow movement which is split accross multiple objectFifos. Specifically, during the objectFifo lowering there will be less memory elements generated at the link point (i.e., the shared tile of all objectFifos in the link) as the objectFifos can share.

The objectFifos which are linked must have a link point (i.e., a shared AIE tile).

Example:

  aie.objectfifo @of1 (%t70, { %t72 }, 2) : !aie.objectfifo<memref<64xi16>>
  aie.objectfifo @of2 (%t72, { %t74 }, 2) : !aie.objectfifo<memref<64xi16>>
  aie.objectfifo.link [@of1] -> [@of2] ([] [])

This operation links two objectFifos which have tile %t72 as a link point. The offset input arrays are not required as the full size of the objects are transferred from @of1 to @of2.

To achieve a broadcast pattern through the link tile, the output objectFifo should have a list of all the consumers tiles. To achieve a distribute pattern from the link tile, there should be multiple output objectFifos in the OjbectFifoLinkOp. In this case, parts will be taken out of the input objectFifo’s buffers based on dst_offsets input array. The join pattern is the exact inverse of the distribute one and uses the src_offsets input array instead.

Traits: HasParent<DeviceOp>

Attributes:

AttributeMLIR TypeDescription
fifoIns::mlir::ArrayAttrsymbol ref array attribute
fifoOuts::mlir::ArrayAttrsymbol ref array attribute
src_offsets::mlir::ArrayAttr64-bit integer array attribute
dst_offsets::mlir::ArrayAttr64-bit integer array attribute

aie.objectfifo.register_external_buffers (::xilinx::AIE::ObjectFifoRegisterExternalBuffersOp)

Registers external buffers to an objectFifo’s shim tile(s) for use in the associated shim DMA(s)

Syntax:

operation ::= `aie.objectfifo.register_external_buffers` attr-dict $objFifo_name `(` $tile `,` `{` $externalBuffers `}` `)` `:` `(` type($externalBuffers) `)`

The aie.objectfifo.register_external_buffers operation is used to register one or multiple external buffers to the shim tile(s) used in an objectFifo creation. During the objectFifo lowering pass, shim DMAs that are generated for those shim tiles will use the registered external buffers. This is currently done because external buffers typically have a different size than the AIE buffers which are used in the AIE tiles of the same objectFifos.

Example:

  aie.objectfifo @of1 (%t70, %t73, 2) : !aie.objectfifo<memref<64xi16>>
  %buffer_in_0  = aie.external_buffer : memref<512 x i16>
  %buffer_in_1  = aie.external_buffer : memref<512 x i16>
  aie.objectfifo.register_external_buffers @of1 (%t70, {buffer_in_0, buffer_in_1}) : (memref<512 x i16>, memref<512 x i16>)

This operation registers external buffers %buffer_in_0 and %buffer_in_1 to use in the shim_dma of shimTile %t70.

Traits: HasParent<DeviceOp>

Interfaces: OpAsmOpInterface, TileElement

Attributes:

AttributeMLIR TypeDescription
objFifo_name::mlir::FlatSymbolRefAttrflat symbol reference attribute

Operands:

Operand Description
tile index
externalBuffers variadic of memref of any type values

aie.objectfifo.register_process (::xilinx::AIE::ObjectFifoRegisterProcessOp)

Operation that produces the acquire/release patterns for a process registered to an objectFifo

Syntax:

operation ::= `aie.objectfifo.register_process` attr-dict $objFifo_name `(`
              $port `,`
              $acquirePatternTensor `:` type($acquirePatternTensor) `,`
              $releasePatternTensor `:` type($releasePatternTensor) `,`
              $callee `,` $length
              `)`

The aie.registerProcess operation allows the user to register a function to an objectFifo along with its acquire and release patterns. These patterns will be used to generate a sequence of acquires and releases on the objectFifo elements. This generated sequence is often in the form of a for loop, however, in the case of cyclo-static patterns only the repetition of same number accesses and releases will generate a for loop. This may result in multiple for loops of different sizes being generated. If there is no repetition, then no loops will be generated.

Example:

  aie.objectfifo @of1 (%t72, %t73, 2) : !aie.objectfifo<memref<16xi32>>
  %length = arith.constant 10 : index
  %acquirePatternProducer = arith.constant dense<[1, 2, 2, 0]> : tensor<4xi32>
  %releasePatternProducer = arith.constant dense<[0, 1, 1, 2]> : tensor<4xi32>
  func @producer_work(%input : !aie.objectfifosubview<memref<16xi32>>) -> () { ... }

  aie.objectfifo.register_process @of1 (Produce, %acquirePatternProducer : tensor<4xi32>, %releasePatternProducer : tensor<4xi32>, @producer_work, %length)

This operation registers function @producer_work and associated patterns to the produce end of @of1. @producer_work will be called with the subviews produced when acquiring elements from @of1 following the acquire pattern.

If the input patterns are static (only one element) then the length of the produced for loop will be that of the input %length. If the input patterns are cyclo-static then they must be of the same size.

Attributes:

AttributeMLIR TypeDescription
portxilinx::AIE::ObjectFifoPortAttr
Ports of an object FIFOEnum cases: * Produce (`Produce`) * Consume (`Consume`)
objFifo_name::mlir::FlatSymbolRefAttrflat symbol reference attribute
callee::mlir::FlatSymbolRefAttrflat symbol reference attribute

Operands:

Operand Description
acquirePatternTensor tensor of 32-bit signless integer values
releasePatternTensor tensor of 32-bit signless integer values
length index

aie.objectfifo.release (::xilinx::AIE::ObjectFifoReleaseOp)

Release operation for object locks in an ObjectFifo

Syntax:

operation ::= `aie.objectfifo.release` attr-dict $objFifo_name `(` $port `,` $size `)`

The aie.objectFifo.release operation releases the locks of the given number of objects in the objectFifo. The mode it releases the locks in is chosen based on the port (producer: release for read, consumer: release for write).

This operation is then converted by the AIEObjectFifoStatefulTransformPass into aie.use_lock operations.

Example:

  aie.objectfifo.release @of1 (Produce, 1)

This operation releases the lock of the next object in the objectFifo named @of1 from producer port.

Attributes:

AttributeMLIR TypeDescription
portxilinx::AIE::ObjectFifoPortAttr
Ports of an object FIFOEnum cases: * Produce (`Produce`) * Consume (`Consume`)
objFifo_name::mlir::FlatSymbolRefAttrflat symbol reference attribute
size::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0

aie.objectfifo.subview.access (::xilinx::AIE::ObjectFifoSubviewAccessOp)

ObjectFifoSubview type accessor method

Syntax:

operation ::= `aie.objectfifo.subview.access` $subview `[` $index `]` attr-dict `:` type($subview) `->` type($output)

Access the Nth element of a value of ObjectFifoSubview type.

Example:

  %subview = aie.objectfifo.acquire @of1 (Produce, 3) : !aie.objectfifosubview<memref<16xi32>>
  %elem = aie.objectfifo.subview.access %subview[0] : !aie.objectfifosubview<memref<16xi32>> -> memref<16xi32>

In this example, %elem is the first object of the subview. Note that this may not correspond to the first element of the objectFifo if other acquire operations took place beforehand.

Attributes:

AttributeMLIR TypeDescription
index::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0

Operands:

Operand Description
subview AIE ObjectFifoSubview type

Results:

Result Description
output memref of any type values

aie.packet_dest (::xilinx::AIE::PacketDestOp)

A destination port

Syntax:

operation ::= `aie.packet_dest` `<` $tile `,` $bundle `:` $channel `>` attr-dict

A object representing the destination of a packet-switched flow. This must exist within an aie.packet_flow operation. The destination Must be unique within a design.

See aie.packet_flow for an example.

Traits: HasParent<PacketFlowOp>

Attributes:

AttributeMLIR TypeDescription
bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)
channel::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0

Operands:

Operand Description
tile index

aie.packet_flow (::xilinx::AIE::PacketFlowOp)

Packet switched flow

Syntax:

operation ::= `aie.packet_flow` `(` $ID `)` regions attr-dict

A logical packet-switched flow between tiles. During place and route, this is replaced by MasterSets and PacketRules inside switchboxes.

The optional attribute keep_pkt_header indicates whether each data packet’s packet header gets preserved at the flow’s destination. The optional attribute priority_route indicates whether the packet flow is routed in priority over other flows, so that they always get allocated with the same master, slave ports, arbiters and master selects (msel).

Example:

  %01 = aie.tile(0, 1)
  aie.packet_flow(0x10) {
    aie.packet_source<%01, "Core" : 0>
    aie.packet_dest<%01, "Core" : 0>
  }

Traits: SingleBlockImplicitTerminator<EndOp>, SingleBlock

Attributes:

AttributeMLIR TypeDescription
ID::mlir::IntegerAttr8-bit signless integer attribute
keep_pkt_header::mlir::BoolAttrbool attribute
priority_route::mlir::BoolAttrbool attribute

aie.packet_rules (::xilinx::AIE::PacketRulesOp)

Packet switched routing rules

Syntax:

operation ::= `aie.packet_rules` `(` $source_bundle `:` $source_channel `)` regions attr-dict

This operation defines packet-switched routing configuration for packets entering a switchbox. It references a port of the containing switchbox, which must be unique among other packetRules operations and aie.connect operations in the containing switchbox. It contains a region of up to 4 aie.rule operations.

See aie.rule for an example.

Traits: SingleBlockImplicitTerminator<EndOp>, SingleBlock

Attributes:

AttributeMLIR TypeDescription
source_bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)
source_channel::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0

aie.packet_source (::xilinx::AIE::PacketSourceOp)

A sourceport

Syntax:

operation ::= `aie.packet_source` `<` $tile `,` $bundle `:` $channel `>` attr-dict

An object representing the destination of a packet-switched flow. This must exist within an aie.packet_flow operation.

See aie.packet_flow for an example.

Traits: HasParent<PacketFlowOp>

Attributes:

AttributeMLIR TypeDescription
bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)
channel::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0

Operands:

Operand Description
tile index

aie.plio (::xilinx::AIE::PLIOOp)

Declare an interface to the PL

Syntax:

operation ::= `aie.plio` `(` $col `)` attr-dict

An interface to the PL.

Interfaces: InferTypeOpInterface

Attributes:

AttributeMLIR TypeDescription
col::mlir::IntegerAttr32-bit signless integer attribute

Results:

Result Description
«unnamed» index

aie.put_cascade (::xilinx::AIE::PutCascadeOp)

An op to write to a cascading stream from a neighboring core

Syntax:

operation ::= `aie.put_cascade` `(` $cascade_value `:` type($cascade_value) `)` attr-dict

An op to write to a cascading stream from a neighboring core. The argument type of this operation must have a size that matches the cascade size, which is architecture-dependent. e.g. AIE1: i384 or vector<8xi48> AIE2: i512 or vector<16xi32>

Traits: HasParent<CoreOp>

Operands:

Operand Description
cascade_value any type

aie.put_stream (::xilinx::AIE::PutStreamOp)

An op to write to a stream channel/port of a switchbox

Syntax:

operation ::= `aie.put_stream` `(` $channel `:` type($channel) `,` $stream_value `:` type($stream_value) `)` attr-dict

An op to write to a stream channel/port of a switchbox.

Traits: HasParent<CoreOp>

Operands:

Operand Description
channel integer
stream_value 32-bit float or 32-bit signless integer or 128-bit signless integer

aie.rule (::xilinx::AIE::PacketRuleOp)

Packet switched routing rule

Syntax:

operation ::= `aie.rule` `(` $mask `,` $value `,` $amsel `)` attr-dict

This operation defines a matching rule and a destination for packet-switched connections in a switchbox. Routing is based on the ID field of packet arriving on the matching port of the containing aie.packetRules. The ID is first bitwise-AND’d with the mask and then checked for equality with the given ID. It is routed to arbiter and master set associated with the first matching entry.

Example: LUT ID | Mask | ID | Arbiter | Msel — | — | — | — | — 0 | 5’b11111 | 5’b00010 | 4 | 1 1 | 5’b11011 | 5’b00001 | 3 | 2 2 | | | | 3 | | | |

If a packet flow that has an ID of 2, it will be directed to the arbiter 4 with msel 1, If a packet flow that has an ID of 1 or 5, it will be directed to the arbiter 3 with msel 2,

We encapsulate the configuration table as follows: Example:

  %a4_1 = aie.amsel<4>(1)
  %a3_2 = aie.amsel<3>(2)

  aie.packet_rules("Core" : 0) {
    aie.rule(0x1F, 0x2, %a4_1)
    aie.rule(0x1B, 0x1, %a3_2)
  }

Traits: HasParent<PacketRulesOp>

Attributes:

AttributeMLIR TypeDescription
mask::mlir::IntegerAttr8-bit signless integer attribute
value::mlir::IntegerAttr8-bit signless integer attribute

Operands:

Operand Description
amsel index

aie.shim_dma (::xilinx::AIE::ShimDMAOp)

Declare a DMA in the PL shim

Syntax:

operation ::= `aie.shim_dma` `(` $tile `)` regions attr-dict

This operation creates a DMA that belongs to a shim tile. The region of a ShimDMAOp is used to setup the DMAs and Block Descriptors.

Example:

  %buf = aie.external_buffer : memref<256xi64>
  %lock1 = aie.lock(%t70, 1)

  %dma = aie.shim_dma(%t70) {
      aie.dma_start(MM2S, 0, ^bd0, ^end)
    ^bd0:
      aie.use_lock(%lock1, Acquire, 1)
      aie.dma_bd(%buf : memref<512 x i16>, 0, 512)
      aie.use_lock(%lock1, Release, 0)
      aie.next_bd ^bd0
    ^end:
      aie.end
  }

Create the shim_dma for tile %t70 and setup one DMA channel and one Buffer Descriptor.

Traits: HasValidBDs, HasValidDMAChannels

Interfaces: FlowEndPoint, InferTypeOpInterface, OpAsmOpInterface, TileElement

Operands:

Operand Description
tile index

Results:

Result Description
«unnamed» index

aie.shim_dma_allocation (::xilinx::AIE::ShimDMAAllocationOp)

Runtime allocation information for a single shim DMA

Syntax:

operation ::= `aie.shim_dma_allocation` $sym_name `(` $channel_dir `,` $channel_index `,` $col `)` attr-dict

This op exists for cases where shim_dma configuration is performed outside of MLIR-AIE and hence there is no appropriate dma_start operation to indicate which channel is being used and on which column the shim_dma is.

It contains attributes for the sym_name of an operation which generated the shim DMA, for the DMAChannelDir and channel index, and for the column of the shim tile to which the originating operation was mapped.

Example:

  %tile00 = aie.tile(0, 0)
  %tile02 = aie.tile(0, 2)
  aie.objectfifo @of_in_0 (%tile00, { %tile02 }, 2) : !aie.objectfifo<memref<64xi16>>

could produce the following allocation info (channel direction MM2S, channel index 1, and shim column 0):

  aie.shim_dma_allocation @of_in_0 (MM2S, 1, 0)

Traits: HasParent<DeviceOp>

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::FlatSymbolRefAttrflat symbol reference attribute
channel_dirxilinx::AIE::DMAChannelDirAttr
DMA Channel directionEnum cases: * S2MM (`S2MM`) * MM2S (`MM2S`)
channel_index::mlir::IntegerAttr64-bit signless integer attribute
col::mlir::IntegerAttr64-bit signless integer attribute
plio::mlir::BoolAttrbool attribute

aie.shim_mux (::xilinx::AIE::ShimMuxOp)

Declare a switch in the PL shim

Syntax:

operation ::= `aie.shim_mux` `(` $tile `)` regions attr-dict

This operation represents the additional interconnect that is part of a shim interface tile. Like the aie.switchbox operation, aie.shim_mux is configured by code in its region, but can only contain connect operations

Example:

%tile = aie.tile(1, 1)
aie.shim_mux(%tile) {
  aie.connect<"North" : 0, "DMA" : 1>
}

Traits: SingleBlockImplicitTerminator<EndOp>, SingleBlock

Interfaces: InferTypeOpInterface, Interconnect, OpAsmOpInterface, TileElement

Operands:

Operand Description
tile index

Results:

Result Description
«unnamed» index

aie.shim_switchbox (::xilinx::AIE::ShimSwitchboxOp)

Declare a switch in the PL shim

Syntax:

operation ::= `aie.shim_switchbox` `(` $col `)` regions attr-dict

A switch in the Shim. AXI-Stream Master Ports AXI-Stream Slave Ports 6 Ports to North (Core Tile) 4 Ports from North (Core Tile) 4 Ports to West 4 Ports from West 4 Ports to East 4 Ports from East 6 Ports to South (DMA, NoC I/F, PL I/F) 8 Ports from South (DMA, NoC I/F, PL I/F) 2 Ports to FIFOs 2 Ports from FIFOs 1 Port for control packet for Shim register access 1 Port for response to access for Shim registers 1 Port for trace packet from Shim

Traits: SingleBlockImplicitTerminator<EndOp>, SingleBlock

Interfaces: InferTypeOpInterface

Attributes:

AttributeMLIR TypeDescription
col::mlir::IntegerAttr32-bit signless integer attribute

Results:

Result Description
«unnamed» index

aie.switchbox (::xilinx::AIE::SwitchboxOp)

Declare a switch

Syntax:

operation ::= `aie.switchbox` `(` $tile `)` regions attr-dict

This operation represents the switchbox that is part of a tile. A switchbox is configured by code in its region, representing various connections

Example:

%tile = aie.tile(1, 1)
aie.switchbox(%tile) {
  aie.connect<"West" : 0, "Core" : 1>
}

Traits: SingleBlockImplicitTerminator<EndOp>, SingleBlock

Interfaces: InferTypeOpInterface, Interconnect, OpAsmOpInterface, TileElement

Operands:

Operand Description
tile index

Results:

Result Description
result index

aie.tile (::xilinx::AIE::TileOp)

Declare an AIE tile

Syntax:

operation ::= `aie.tile` `(` $col `,` $row `)` attr-dict

This operation creates an AIE tile in the AIE array. We specify the column and the row of the tile.

A tile encompasses core module (CoreOp), memory module (MemOp), stream switch (SwitchboxOp), memory buffer (BufferOp), and lock (LockOp).

A tile is a logical abstraction. We use a tile to establish ownership of a hardware entity.

Note that row 0 of the Tile array is different from other rows, since it models the shim interface between the AIE array proper and the PL. The South-West/Lower Right most core exists in Tile(0,1)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, FlowEndPoint, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), OpAsmOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
col::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0
row::mlir::IntegerAttr32-bit signless integer attribute whose minimum value is 0

Results:

Result Description
result index

aie.use_lock (::xilinx::AIE::UseLockOp)

Acquire/release lock op

Syntax:

operation ::= `aie.use_lock` `(` $lock `,` $action (`,` $value^)? (`,` $blocking^)? `)` attr-dict

This operation uses a lock. In AIE1, a lock can be acquired with a value or released with a value. This should be understood as a “blocking” operation. In AIE2, locks are counting semaphores without an inherent acquired/release characteristic. This lock must appear in a parent op where the tile can be determined (A CoreOp, a ShimDMAOp, a MemOp, or a MemTileDMAOp).

Attributes:

AttributeMLIR TypeDescription
actionxilinx::AIE::LockActionAttr
lock acquire/releaseEnum cases: * Acquire (`Acquire`) * AcquireGreaterEqual (`AcquireGreaterEqual`) * Release (`Release`)
value::mlir::IntegerAttr32-bit signless integer attribute
blockingxilinx::AIE::LockBlockingAttr
lock operation is blockingEnum cases: * NonBlocking (`NonBlocking`) * Blocking (`Blocking`)
acq_en::mlir::BoolAttrbool attribute

Operands:

Operand Description
lock index

aie.wire (::xilinx::AIE::WireOp)

A bundle of physical wires between components

Syntax:

operation ::= `aie.wire` `(` $source `:` $source_bundle `,` $dest `:` $dest_bundle `)` attr-dict

The aie.wire operation represents a physical set of connections between components in a Versal device. Typically, these components are switches, represented by an aie.switchbox operation, and tiles, represented by an aie.tile operation.

Attributes:

AttributeMLIR TypeDescription
source_bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)
dest_bundlexilinx::AIE::WireBundleAttr
Bundle of wiresEnum cases: * Core (`Core`) * DMA (`DMA`) * FIFO (`FIFO`) * South (`South`) * West (`West`) * North (`North`) * East (`East`) * PLIO (`PLIO`) * NOC (`NOC`) * Trace (`Trace`) * TileControl (`TileControl`)

Operands:

Operand Description
source index
dest index

Attributes

BDDimLayoutArrayArrayAttr

Syntax:

#aie.bd_dim_layout_array_array<
  ::llvm::ArrayRef<BDDimLayoutArrayAttr>   # value
>

Parameters:

Parameter C++ type Description
value ::llvm::ArrayRef<BDDimLayoutArrayAttr>  

BDDimLayoutArrayAttr

Syntax:

#aie.bd_dim_layout_array<
  ::llvm::ArrayRef<BDDimLayoutAttr>   # value
>

Parameters:

Parameter C++ type Description
value ::llvm::ArrayRef<BDDimLayoutAttr>  

BDDimLayoutAttr

Tuple encoding the stride and size of one dimension in an AIE2 n-dimensional
buffer descriptor;

Syntax:

#aie.bd_dim_layout<
  uint32_t,   # size
  uint32_t   # stride
>

Parameters:

Parameter C++ type Description
size uint32_t  
stride uint32_t  

BDPadLayoutArrayAttr

Syntax:

#aie.bd_pad_layout_array<
  ::llvm::ArrayRef<BDPadLayoutAttr>   # value
>

Parameters:

Parameter C++ type Description
value ::llvm::ArrayRef<BDPadLayoutAttr>  

BDPadLayoutAttr

Tuple encoding number of zeros before and after on that dimension in an AIE2 
n-dimensional buffer descriptor;

Syntax:

#aie.bd_pad_layout<
  uint16_t,   # const_pad_before
  uint16_t   # const_pad_after
>

Parameters:

Parameter C++ type Description
const_pad_before uint16_t  
const_pad_after uint16_t  

PacketInfoAttr

Tuple encoding the type and header of a packet;

Syntax:

#aie.packet_info<
  uint16_t,   # pkt_type
  uint16_t   # pkt_id
>

Parameters:

Parameter C++ type Description
pkt_type uint16_t  
pkt_id uint16_t  

Type constraints

AIE ObjectFifoSubview type

AIE objectFifo type

Enums

AIEArch

AIE Architecture

Cases:

Symbol Value String
AIE1 1 AIE1
AIE2 2 AIE2
AIE2p 3 AIE2p

AIEDevice

AIE Device

Cases:

Symbol Value String
xcvc1902 1 xcvc1902
xcve2302 2 xcve2302
xcve2802 3 xcve2802
npu1 4 npu1
npu1_1col 5 npu1_1col
npu1_2col 6 npu1_2col
npu1_3col 7 npu1_3col
npu1_4col 8 npu1_4col
npu2 9 npu2

CascadeDir

Directions for cascade

Cases:

Symbol Value String
South 3 South
West 4 West
North 5 North
East 6 East

DMAChannelDir

DMA Channel direction

Cases:

Symbol Value String
S2MM 0 S2MM
MM2S 1 MM2S

LockAction

lock acquire/release

Cases:

Symbol Value String
Acquire 0 Acquire
AcquireGreaterEqual 2 AcquireGreaterEqual
Release 1 Release

LockBlocking

lock operation is blocking

Cases:

Symbol Value String
NonBlocking 0 NonBlocking
Blocking 1 Blocking

ObjectFifoPort

Ports of an object FIFO

Cases:

Symbol Value String
Produce 0 Produce
Consume 1 Consume

WireBundle

Bundle of wires

Cases:

Symbol Value String
Core 0 Core
DMA 1 DMA
FIFO 2 FIFO
South 3 South
West 4 West
North 5 North
East 6 East
PLIO 7 PLIO
NOC 8 NOC
Trace 9 Trace
TileControl 10 TileControl